Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 20(1): e1011911, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206964

RESUMEN

The discrepancy between short- and long-term rate estimates, known as the time-dependent rate phenomenon (TDRP), poses a challenge to extrapolating evolutionary rates over time and reconstructing evolutionary history of viruses. The TDRP reveals a decline in evolutionary rate estimates with the measurement timescale, explained empirically by a power-law rate decay, notably observed in animal and human viruses. A mechanistic evolutionary model, the Prisoner of War (PoW) model, has been proposed to address TDRP in viruses. Although TDRP has been studied in animal viruses, its impact on plant virus evolutionary history remains largely unexplored. Here, we investigated the consequences of TDRP in plant viruses by applying the PoW model to reconstruct the evolutionary history of sobemoviruses, plant pathogens with significant importance due to their impact on agriculture and plant health. Our analysis showed that the Sobemovirus genus dates back over four million years, indicating an ancient origin. We found evidence that supports deep host jumps to Poaceae, Fabaceae, and Solanaceae occurring between tens to hundreds of thousand years ago, followed by specialization. Remarkably, the TDRP-corrected evolutionary history of sobemoviruses was extended far beyond previous estimates that had suggested their emergence nearly 9,000 years ago, a time coinciding with the Neolithic period in the Near East. By incorporating sequences collected through metagenomic analyses, the resulting phylogenetic tree showcases increased genetic diversity, reflecting a deep history of sobemovirus species. We identified major radiation events beginning between 4,600 to 2,000 years ago, which aligns with the Neolithic period in various regions, suggesting a period of rapid diversification from then to the present. Our findings make a case for the possibility of deep evolutionary origins of plant viruses.


Asunto(s)
Virus de Plantas , Virus ARN , Animales , Humanos , Filogenia , Evolución Biológica , Virus ARN/genética , Virus de Plantas/genética , Plantas , Evolución Molecular
2.
Virus Evol ; 9(2): vead049, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37649958

RESUMEN

The rice yellow mottle virus (RYMV) is a model in plant virus molecular epidemiology, with the reconstruction of historical introduction routes at the scale of the African continent. However, information on patterns of viral prevalence and viral diversity over multiple years at a local scale remains scarce, in spite of potential implications for crop protection. Here, we describe a 5-year (2015-9) monitoring of RYMV prevalence in six sites from western Burkina Faso (geographic areas of Bama, Banzon, and Karfiguela). It confirmed one irrigated site as a disease hotspot and also found one rainfed lowland (RL) site with occasional high prevalence levels. Within the studied fields, a pattern of disease aggregation was evidenced at a 5-m distance, as expected for a mechanically transmitted virus. Next, we monitored RYMV genetic diversity in the irrigated disease hotspot site, revealing a high viral diversity, with the current coexistence of various distinct genetic groups at the site scale (ca. 520 ha) and also within various specific fields (25 m side). One genetic lineage, named S1bzn, is the most recently emerged group and increased in frequency over the studied period (from 20 per cent or less in 2015-6 to more than 65 per cent in 2019). Its genome results from a recombination between two other lineages (S1wa and S1ca). Finally, experimental work revealed that three rice varieties commonly cultivated in Burkina Faso were not different in terms of resistance level, and we also found no significant effect of RYMV genetic groups on symptom expression and viral load. We found, however, that infection outcome depended on the specific RYMV isolate, with two isolates from the lineage S1bzn accumulating at the highest level at early infections. Overall, this study documents a case of high viral prevalence, high viral diversity, and co-occurrence of divergent genetic lineages at a small geographic scale. A recently emerged lineage, which comprises viral isolates inducing severe symptoms and high accumulation under controlled conditions, could be recently rising through natural selection. Following up the monitoring of RYMV diversity is required to confirm this trend and further understand the factors driving the local maintenance of viral diversity.

3.
Viruses ; 15(4)2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37112939

RESUMEN

Rice yellow mottle virus (RYMV) is a major biotic constraint to rice cultivation in Africa. RYMV shows a high genetic diversity. Viral lineages were defined according to the coat protein (CP) phylogeny. Varietal selection is considered as the most efficient way to manage RYMV. Sources of high resistance were identified mostly in accessions of the African rice species, Oryza glaberrima. Emergence of resistance-breaking (RB) genotypes was observed in controlled conditions. The RB ability was highly contrasted, depending on the resistance sources and on the RYMV lineages. A molecular marker linked to the adaptation to susceptible and resistant O. glaberrima was identified in the viral protein genome-linked (VPg). By contrast, as no molecular method was available to identify the hypervirulent lineage able to overcome all known resistance sources, plant inoculation assays were still required. Here, we designed specific RT-PCR primers to infer the RB abilities of RYMV isolates without greenhouse experiments or sequencing steps. These primers were tested and validated on 52 isolates, representative of RYMV genetic diversity. The molecular tools described in this study will contribute to optimizing the deployment strategy of resistant lines, considering the RYMV lineages identified in fields and their potential adaptability.


Asunto(s)
Oryza , Virus de Plantas , Genoma Viral , Virus de Plantas/genética , Genotipo , África
4.
Virus Res ; 329: 199106, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36990396

RESUMEN

Rice yellow mottle virus (RYMV) has persisted as a major biotic constraint to rice production in Africa. However, no data on RYMV epidemics were available in Ghana, although it is an intensive rice-producing country. Surveys were performed from 2010 to 2020 in eleven rice-growing regions of Ghana. Symptom observations and serological detections confirmed that RYMV is circulating in most of these regions. Coat protein gene and complete genome sequencings revealed that RYMV in Ghana almost exclusively belongs to the strain S2, one of the strains covering the largest area in West Africa. We also detected the presence of the S1ca strain which is being reported for the first time outside its area of origin. These results suggested a complex epidemiological history of RYMV in Ghana and a recent expansion of S1ca to West Africa. Phylogeographic analyses reconstructed at least five independent RYMV introductions in Ghana for the last 40 years, probably due to rice cultivation intensification in West Africa leading to a better circulation of RYMV. In addition to identifying some routes of RYMV dispersion in Ghana, this study contributes to the epidemiological surveillance of RYMV and helps to design disease management strategies, especially through breeding for rice disease resistance.


Asunto(s)
Oryza , Virus de Plantas , Ghana/epidemiología , Fitomejoramiento , Virus de Plantas/genética , Variación Genética
5.
New Phytol ; 237(3): 900-913, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36229931

RESUMEN

Viral diseases are a major limitation for crop production, and their control is crucial for sustainable food supply. We investigated by a combination of functional genetics and experimental evolution the resistance of rice to the rice yellow mottle virus (RYMV), which is among the most devastating rice pathogens in Africa, and the mechanisms underlying the extremely fast adaptation of the virus to its host. We found that the RYMV3 gene that protects rice against the virus codes for a nucleotide-binding and leucine-rich repeat domain immune receptor (NLRs) from the Mla-like clade of NLRs. RYMV3 detects the virus by forming a recognition complex with the viral coat protein (CP). The virus escapes efficiently from detection by mutations in its CP, some of which interfere with the formation of the recognition complex. This study establishes that NLRs also confer in monocotyledonous plants immunity to viruses, and reveals an unexpected functional diversity for NLRs of the Mla clade that were previously only known as fungal disease resistance proteins. In addition, it provides precise insight into the mechanisms by which viruses adapt to plant immunity and gives important knowledge for the development of sustainable resistance against viral diseases of cereals.


Asunto(s)
Oryza , Virus ARN , Virosis , Leucina , Virus ARN/metabolismo , Nucleótidos , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas NLR/metabolismo
6.
Arch Virol ; 167(1): 245-248, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34697658

RESUMEN

Pearl millet (Pennisetum glaucum (L.) R. Br.) is a staple food that is widely cultivated in sub-Saharan Africa. In August 2018, a survey was conducted in the main producing regions of Burkina Faso, and leaf samples were analyzed using virion-associated nucleic acid (VANA)-based metagenomic approach and Illumina sequencing. A new virus, tentatively named "Pennisetum glaucum marafivirus" (PGMV), was detected, and its complete nucleotide sequence of 6364 nucleotides was determined. The sequence contains a large open reading frame (ORF) encoding a polyprotein of 224.2 kDa with five domains (methyltransferase, papain-like protease, helicase, RNA-dependent RNA polymerase, and coat proteins), typical of marafiviruses. Additionally, a characteristic conserved marafibox domain was detected in the genome. The nucleotide sequence of the complete PGMV genome shares 68.5% identity with that of sorghum bicolor marafivirus, and its coat protein shares 58.5% identity with that of oat blue dwarf virus. Phylogenetic analysis confirmed that the pearl millet virus is unambiguously grouped with members of the genus Marafivirus in the family Tymoviridae. This is the first report on the occurrence of a marafivirus in pearl millet.


Asunto(s)
Pennisetum , Tymoviridae , Burkina Faso , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , ARN Viral/genética , Tymoviridae/genética
7.
J Gen Virol ; 102(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34951396

RESUMEN

The family Solemoviridae includes viruses with icosahedral particles (26-34 nm in diameter) assembled on T=3 symmetry with a 4-6 kb positive-sense, monopartite, polycistronic RNA genome. Transmission of members of the genera Sobemovirus and Polemovirus occurs via mechanical wounding, vegetative propagation, insect vectors or abiotically through soil; members of the genera Polerovirus and Enamovirus are transmitted by specific aphids. Most solemoviruses have a narrow host range. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Solemoviridae, which is available at ictv.global/report/solemoviridae.


Asunto(s)
Virus de Plantas/genética , Virus ARN/genética , Genoma Viral , Especificidad del Huésped , Sistemas de Lectura Abierta , Virus de Plantas/clasificación , Virus ARN/clasificación , ARN Viral/genética , Virión/ultraestructura , Replicación Viral
8.
Prog Mol Biol Transl Sci ; 183: 355-409, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34656333

RESUMEN

Intrinsically disordered proteins and regions (IDPs/IDRs) make up a large part of viral proteomes, but their real prevalence across the global plant virome is still murky, partly because of their massive diversity. Here, we propose an evolutionary quantitative proteomic approach to foray into genomic signatures that are preserved in the amino acid sequences of orthologous IDRs. Markedly, we found that relatively abundant IDP varies substantially in viral species among and within plant virus families, including according to genome size, partition or replication strategies. We also demonstrate that most encoded proteomic modules of the plant virome contain multiple disordered features that are phylogenomically preserved, and can be correlated to genomic, bio-physical and evolutionary strategies. Furthermore, our focused interactome-wide analysis highlights lines of evidence indicating that various IDPs with similar evolutionary signatures modulate viral multifunctionality. Moreover, estimated fractions of IDR in the vicinity of pivotal evolutionary structural domains embedded in interaction modules are strongly enriched with affinity binding functional annotations and relate to vector-borne virus transmission modes. Importantly, molecular recognition features (MoRFs) are abundantly widespread in IDRs of viral hallmark modules and their binding partners. Finally, we propose a coarse-grained conceptual framework in which evolutionary proteome-wide IDP/IDRs patterns can be, rather, reliably exploited to elucidate their foundational fine-tuning role in plant virus transmission mechanisms. While opening unexplored avenues for consistently predicting virus-host functions for many new or uncharacterized viruses based on their proteomic repertoire, other considerations advocating further structural IDP research in Plant Virology are thoroughly discussed in light of viral modular evolution.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Virus , Humanos , Proteoma , Proteómica , Viroma
9.
Viruses ; 13(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922593

RESUMEN

The rice stripe necrosis virus (RSNV) has been reported to infect rice in several countries in Africa and South America, but limited genomic data are currently publicly available. Here, eleven RSNV genomes were entirely sequenced, including the first corpus of RSNV genomes of African isolates. The genetic variability was differently distributed along the two genomic segments. The segment RNA1, within which clusters of polymorphisms were identified, showed a higher nucleotidic variability than did the beet necrotic yellow vein virus (BNYVV) RNA1 segment. The diversity patterns of both viruses were similar in the RNA2 segment, except for an in-frame insertion of 243 nucleotides located in the RSNV tgbp1 gene. Recombination events were detected into RNA1 and RNA2 segments, in particular in the two most divergent RSNV isolates from Colombia and Sierra Leone. In contrast to BNYVV, the RSNV molecular diversity had a geographical structure with two main RSNV lineages distributed in America and in Africa. Our data on the genetic diversity of RSNV revealed unexpected differences with BNYVV suggesting a complex evolutionary history of the genus Benyvirus.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Viral , ARN Viral/genética , Tenuivirus/genética , Filogenia , Polimorfismo Genético , Tenuivirus/clasificación
10.
Virus Evol ; 7(2): veab072, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36819970

RESUMEN

To investigate the spread of Rice yellow mottle virus (RYMV) along the Niger River, regular sampling of virus isolates was conducted along 500 km of the Niger Valley in the Republic of Niger and was complemented by additional sampling in neighbouring countries in West Africa and Central Africa. The spread of RYMV into and within the Republic of Niger was inferred as a continuous process using a Bayesian statistical framework applied previously to reconstruct its dispersal history in West Africa, East Africa, and Madagascar. The spatial resolution along this section of the Niger River was the highest implemented for RYMV and possibly for any plant virus. We benefited from the results of early field surveys of the disease for the validation of the phylogeographic reconstruction and from the well-documented history of rice cultivation changes along the Niger River for their interpretation. As a prerequisite, the temporal signal of the RYMV data sets was revisited in the light of recent methodological advances. The role of the hydrographic network of the Niger Basin in RYMV spread was examined, and the link between virus population dynamics and the extent of irrigated rice was assessed. RYMV was introduced along the Niger River in the Republic of Niger in the early 1980s from areas to the southwest of the country where rice was increasingly grown. Viral spread was triggered by a major irrigation scheme made of a set of rice perimeters along the river valley. The subsequent spatial and temporal host continuity and the inoculum build-up allowed for a rapid spread of RYMV along the Niger River, upstream and downstream, over hundreds of kilometres, and led to the development of severe epidemics. There was no evidence of long-distance dissemination of the virus through natural water. Floating rice in the main meanders of the Middle Niger did not contribute to virus dispersal from West Africa to Central Africa. RYMV along the Niger River is an insightful example of how agricultural intensification favours pathogen emergence and spread.

11.
Virus Evol ; 5(2): vez023, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31384483

RESUMEN

Rice yellow mottle virus (RYMV) in Madagascar Island provides an opportunity to study the spread of a plant virus disease after a relatively recent introduction in a large and isolated country with a heterogeneous host landscape ecology. Here, we take advantage of field survey data on the occurrence of RYMV disease throughout Madagascar dating back to the 1970s, and of virus genetic data from ninety-four isolates collected since 1989 in most regions of the country to reconstruct the epidemic history. We find that the Malagasy isolates belong to a unique recombinant strain that most likely entered Madagascar through a long-distance introduction from the most eastern part of mainland Africa. We infer the spread of RYMV as a continuous process using a Bayesian statistical framework. In order to calibrate the time scale in calendar time units in this analysis, we pool the information about the RYMV evolutionary rate from several geographical partitions. Whereas the field surveys and the phylogeographic reconstructions both point to a rapid southward invasion across hundreds of kilometers throughout Madagascar within three to four decades, they differ on the inferred origin location and time of the epidemic. The phylogeographic reconstructions suggest a lineage displacement and unveil a re-invasion of the northern regions that may have remained unnoticed otherwise. Despite ecological differences that could affect the transmission potential of RYMV in Madagascar and in mainland Africa, we estimate similar invasion and dispersal rates. We could not identify environmental factors that have a relevant impact on the lineage dispersal velocity of RYMV in Madagascar. This study highlights the value and complementarity of (historical) nongenetic and (more contemporaneous) genetic surveillance data for reconstructing the history of spread of plant viruses.

12.
Microbiol Resour Announc ; 8(30)2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346021

RESUMEN

The full-length genomes of two isolates of Rice yellow mottle virus from Ethiopia were sequenced. A comparison with 28 sequences from East Africa showed that they clustered within a new strain named S4et, related to the S4mg and S4ug strains found in the Lake Victoria Basin and Madagascar, respectively.

13.
Genome Announc ; 6(8)2018 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-29472342

RESUMEN

Five isolates of Rice yellow mottle virus from western Kenya were fully sequenced. One isolate of strain S4lv had been collected in 1966. Two isolates belonged to the emerging strain S4ug recently described in Uganda. Two isolates collected in 2012 are putative recombinants between the S4lv and S4ug strains.

14.
Bio Protoc ; 8(11): e2863, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34285979

RESUMEN

Rice yellow mottle virus (RYMV), a mechanically transmitted virus that causes serious damage to cultivated rice plants, is endemic to Africa. Varietal selection for resistance is considered to be the most effective and sustainable management strategy. Standardized resistance evaluation procedures are required for the identification and characterization of resistance sources. This paper describes a protocol for mechanical inoculation of rice seedlings with RYMV and two methods of resistance evaluation - one based on a symptom severity index and the other on virus detection through double antibody sandwich-enzyme linked immunosorbent assay (DAS-ELISA).

15.
Phytopathology ; 108(2): 299-307, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28990483

RESUMEN

Rice yellow mottle virus (RYMV) causes high losses to rice production in Africa. Several sources of varietal high resistance are available but the emergence of virulent pathotypes that are able to overcome one or two resistance alleles can sometimes occur. Both resistance spectra and viral adaptability have to be taken into account to develop sustainable rice breeding strategies against RYMV. In this study, we extended previous resistance spectrum analyses by testing the rymv1-4 and rymv1-5 alleles that are carried by the rice accessions Tog5438 and Tog5674, respectively, against isolates that are representative of RYMV genetic and pathogenic diversity. Our study revealed a hypervirulent pathotype, named thereafter pathotype T', that is able to overcome all known sources of high resistance. This pathotype, which is spatially localized in West-Central Africa, appears to be more abundant than previously suspected. To better understand the adaptive processes of pathotype T', molecular determinants of resistance breakdown were identified via Sanger sequencing and validated through directed mutagenesis of an infectious clone. These analyses confirmed the key role of convergent nonsynonymous substitutions in the central part of the viral genome-linked protein to overcome RYMV1-mediated resistance. In addition, deep-sequencing analyses revealed that resistance breakdown does not always coincide with fixed mutations. Actually, virulence mutations that are present in a small proportion of the virus population can be sufficient for resistance breakdown. Considering the spatial distribution of RYMV strains in Africa and their ability to overcome the RYMV resistance genes and alleles, we established a resistance-breaking risk map to optimize strategies for the deployment of sustainable and resistant rice lines in Africa.


Asunto(s)
Variación Genética , Genoma Viral/genética , Oryza/virología , Enfermedades de las Plantas/virología , Virus de Plantas/genética , Proteínas Virales/genética , África Central , Alelos , Resistencia a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Oryza/genética , Oryza/inmunología , Enfermedades de las Plantas/inmunología , Virus de Plantas/patogenicidad , Análisis de Secuencia de ADN , Virulencia
16.
Mol Biol Evol ; 35(1): 38-49, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29029259

RESUMEN

Intrinsic disorder (ID) in proteins is defined as a lack of stable structure in physiological conditions. Intrinsically disordered regions (IDRs) are highly abundant in some RNA virus proteomes. Low topological constraints exerted on IDRs are expected to buffer the effect of numerous deleterious mutations and could be related to the remarkable adaptive potential of RNA viruses to overcome resistance of their host. To experimentally test this hypothesis in a natural pathosystem, a set of four variants of Potato virus Y (PVY; Potyvirus genus) containing various ID degrees in the Viral genome-linked (VPg) protein, a key determinant of potyvirus adaptation, was designed. To estimate the ID contribution to the VPg-based PVY adaptation, the adaptive ability of the four PVY variants was monitored in the pepper host (Capsicum annuum) carrying a recessive resistance gene. Intriguingly, the two mutants with the highest ID content displayed a significantly higher ability to restore infection in the resistant host, whereas the less intrinsically disordered mutant was unable to restore infection. The role of ID on virus adaptation may be due either to a larger exploration of evolutionary pathways or the minimization of fitness penalty caused by resistance-breaking mutations. This pioneering study strongly suggests the positive impact of ID in an RNA virus adaptive capacity.


Asunto(s)
Adaptación Fisiológica/genética , Potyvirus/genética , Ribonucleoproteínas/genética , Proteínas no Estructurales Virales/genética , Aclimatación/genética , Evolución Biológica , Capsicum/virología , Evolución Molecular , Genoma Viral , Mutación/genética , Proyectos Piloto , Estabilidad Proteica , Proteoma , ARN/genética , Ribonucleoproteínas/fisiología , Proteínas no Estructurales Virales/fisiología
17.
Genome Announc ; 5(44)2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29097464

RESUMEN

The complete sequence of the isolate Mw10 of Rice yellow mottle virus was determined. Sequence comparisons revealed 8.4% to 10.7% nucleotide divergence from the published sequences, resulting in the definition of the strain S7. Importantly, a putative recombination event was identified encompassing the viral genome-linked protein involved in host adaptation.

18.
Front Plant Sci ; 8: 645, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28507553

RESUMEN

Simultaneous infection of a single plant by various pathogen species is increasingly recognized as an important modulator of host resistance and a driver of pathogen evolution. Because plants in agro-ecosystems are the target of a multitude of pathogenic microbes, co-infection could be frequent, and consequently important to consider. This is particularly true for rapidly intensifying crops, such as rice in Africa. This study investigated potential interactions between pathogens causing two of the major rice diseases in Africa: the Rice yellow mottle virus (RYMV) and the bacterium Xanthomonas oryzae pathovar oryzicola (Xoc) in order to: 1/ document virus-bacteria co-infection in rice in the field, 2/ explore experimentally their consequences in terms of symptom development and pathogen multiplication, 3/ test the hypothesis of underlying molecular mechanisms of interactions and 4/ explore potential evolutionary consequences. Field surveys in Burkina Faso revealed that a significant proportion of rice fields were simultaneously affected by the two diseases. Co-infection leads to an increase in bacterial specific symptoms, while a decrease in viral load is observed compared to the mono-infected mock. The lack of effect found when using a bacterial mutant for an effector specifically inducing expression of a small RNA regulatory protein, HEN1, as well as a viral genotype-specific effect, both suggest a role for gene silencing mechanisms mediating the within-plant interaction between RYMV and Xoc. Potential implications for pathogen evolution could not be inferred because genotype-specific effects were found only for pathogens originating from different countries, and consequently not meeting in the agrosystem. We argue that pathogen-pathogen-host interactions certainly deserve more attention, both from a theoretical and applied point of view.

19.
J Gen Virol ; 98(4): 862-873, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28475036

RESUMEN

Prediction of pathogen emergence is an important field of research, both in human health and in agronomy. Most studies of pathogen emergence have focused on the ecological or anthropic factors involved rather than on the role of intrinsic pathogen properties. The capacity of pathogens to infect a large set of host species, i.e. to possess a large host range breadth (HRB), is tightly linked to their emergence propensity. Using an extensive plant virus database, we found that four traits related to virus genome or transmission properties were strongly and robustly linked to virus HRB. Broader host ranges were observed for viruses with single-stranded genomes, those with three genome segments and nematode-transmitted viruses. Also, two contrasted groups of seed-transmitted viruses were evidenced. Those with a single-stranded genome had larger HRB than non-seed-transmitted viruses, whereas those with a double-stranded genome (almost exclusively RNA) had an extremely small HRB. From the plant side, the family taxonomic rank appeared as a critical threshold for virus host range, with a highly significant increase in barriers to infection between plant families. Accordingly, the plant-virus infectivity matrix shows a dual structure pattern: a modular pattern mainly due to viruses specialized to infect plants of a given family and a nested pattern due to generalist viruses. These results contribute to a better prediction of virus host jumps and emergence risks.


Asunto(s)
Especificidad del Huésped , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Plantas/virología , Genoma Viral , Fenotipo , Virus de Plantas/genética , Plantas/clasificación
20.
Theor Appl Genet ; 130(4): 807-818, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28144699

RESUMEN

KEY MESSAGE: A new resistance gene against Rice yellow mottle virus was identified and mapped in a 15-kb interval. The best candidate is a CC-NBS-LRR gene. Rice yellow mottle virus (RYMV) disease is a serious constraint to the cultivation of rice in Africa and selection for resistance is considered to be the most effective management strategy. The aim of this study was to characterize the resistance of Tog5307, a highly resistant accession belonging to the African cultivated rice species (Oryza glaberrima), that has none of the previously identified resistance genes to RYMV. The specificity of Tog5307 resistance was analyzed using 18 RYMV isolates. While three of them were able to infect Tog5307 very rapidly, resistance against the others was effective despite infection events attributed to resistance-breakdown or incomplete penetrance of the resistance. Segregation of resistance in an interspecific backcross population derived from a cross between Tog5307 and the susceptible Oryza sativa variety IR64 showed that resistance is dominant and is controlled by a single gene, named RYMV3. RYMV3 was mapped in an approximately 15-kb interval in which two candidate genes, coding for a putative transmembrane protein and a CC-NBS-LRR domain-containing protein, were annotated. Sequencing revealed non-synonymous polymorphisms between Tog5307 and the O. glaberrima susceptible accession CG14 in both candidate genes. An additional resistant O. glaberrima accession, Tog5672, was found to have the Tog5307 genotype for the CC-NBS-LRR gene but not for the putative transmembrane protein gene. Analysis of the cosegregation of Tog5672 resistance with the RYMV3 locus suggests that RYMV3 is also involved in Tog5672 resistance, thereby supporting the CC-NBS-LRR gene as the best candidate for RYMV3.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Oryza/genética , Enfermedades de las Plantas/genética , Virus de Plantas , Mapeo Cromosómico , Marcadores Genéticos , Fenotipo , Enfermedades de las Plantas/virología , Virus ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...